Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Aopc 2022: Optoelectronics and Nanophotonics ; 12556, 2022.
Article in English | Web of Science | ID: covidwho-20245398

ABSTRACT

In this study, we theoretically propose a surface plasmon resonance (SPR) biosensor composed of a plasmonic gold film, double negative (DNG) metamaterial, graphene-MoS2-COOH Van der Waals heterostructures and gold nanoparticles (Au NPs). We use a novel scheme of Goos-Hanchen (GH) shift to study the biosensing performances of our proposed plasmonic biosensor. The calculation results show that, both an extreme low reflectivity of 8.52x10(-10) and significantly enhanced GH sensitivity of 2.1530x10(7) mu m/RIU can be obtained, corresponding to the optimal configuration: 32 nm Au film/120 nm metamaterial/4-layer graphene/4-layer MoS2-COOH. In addition, there is a theoretically excellent linear response between the concentration of target analytes (SARS-CoV-2 and S protein) and the change in differential GH shift. Our proposed biosensor promises to be a useful tool for performing the novel coronavirus detection.

2.
IEEE Sensors Journal ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20237396

ABSTRACT

A technique is implemented for the generation of multiple Fano-resonances in a plasmonic waveguide based rectangular cavity. A rectangular cavity provides four Fano peaks which can further be increased to nine by inserting the metallic bars in it. The trapped surface plasmon polaritons by metallic bars cause the generation of multiple Fano peaks over the wavelength range of 450 nm - 1300 nm. The obtained response is validated through Fano profile and Fano shape parameter is calculated for each resonance peak. The performance of the proposed device is numerically studied as refractive index sensor and method for analyzing the detection of pathogenic virus like SARS-Cov-2 is reported. Out of nine Fano peaks, the best values of sensing performance indices are obtained with full-width, half-maxima of 1.7 nm, quality factor of 405, sensitivity of 1145.71 nm/RIU and figure of merit of 393.25 RIU-1. IEEE

3.
Sensors (Basel) ; 23(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20242697

ABSTRACT

Viral infections can pose a major threat to public health by causing serious illness, leading to pandemics, and burdening healthcare systems. The global spread of such infections causes disruptions to every aspect of life including business, education, and social life. Fast and accurate diagnosis of viral infections has significant implications for saving lives, preventing the spread of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-based techniques are commonly used to detect viruses in the clinic. However, PCR has several drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick diagnosis and efficient control of the virus's spread. Optical devices, in particular, are of great interest due to their advantages such as high sensitivity and direct readout. The current review discusses solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators, and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.


Subject(s)
Biosensing Techniques , COVID-19 , Viruses , Humans , COVID-19/diagnosis , Pandemics , Biosensing Techniques/methods , Surface Plasmon Resonance/methods
4.
Biosensors (Basel) ; 13(5)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20235396

ABSTRACT

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , SARS-CoV-2 , Gold , Immunoassay/methods , COVID-19/diagnosis
5.
Plasmonics ; : 1-9, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20238130

ABSTRACT

Severe respiratory syndrome COVID-19 (SARS-CoV-2) outbreak has became the most important global health issue, and simultaneous efforts to fast and low-cost diagnosis of this virus were performed by researchers. One of the most usual tests was colorimetric methods based on the change of color of gold nanoparticles in the presence of viral antibodies, antigens, and other biological agents. This spectral change can be due to the aggregation of the particles or the shift of localized surface plasmon resonance due to the electrical interactions of surface agents. It is known that surface agents could easily shift the absorption peak of metallic nanocolloids which is attributed to the localized surface plasmon resonance. Experimental diagnosis assays for colorimetric detection of SARS-CoV-2 using Au NPs were reviewed, and the shift of absorption peak was studied from the viewpoint of numerical analysis. Using the numerical method, the refractive index and real and imaginary parts of the effective relative permittivity of the viral biological shell around Au NPs were obtained. This model gives a quantitative description of colorimetric assays of the detection of SARS-CoV-2 using Au NPs.

6.
Small ; : e2302023, 2023 May 28.
Article in English | MEDLINE | ID: covidwho-20231378

ABSTRACT

Deoxyribonuclease-I (DNase-I), a representative endonuclease, is an important biomarker for the diagnosis of infectious diseases and cancer progression. However, enzymatic activity decreases rapidly ex vivo, which highlights the need for precise on-site detection of DNase-I. Here, a localized surface plasmon resonance (LSPR) biosensor that enables the simple and rapid detection of DNase-I is reported. Moreover, a novel technique named electrochemical deposition and mild thermal annealing (EDMIT) is applied to overcome signal variations. By taking advantage of the low adhesion of gold clusters on indium tin oxide substrates, both the uniformity and sphericity of gold nanoparticles are increased under mild thermal annealing conditions via coalescence and Ostwald ripening. This ultimately results in an approximately 15-fold decrease in LSPR signal variations. The linear range of the fabricated sensor is 20-1000 ng mL-1 with a limit of detection (LOD) of 127.25 pg mL-1 , as demonstrated by spectral absorbance analyses. The fabricated LSPR sensor stably measured DNase-I concentrations from samples collected from both an inflammatory bowel disease (IBD) mouse model, as well as human patients with severe COVID-19 symptoms. Therefore, the proposed LSPR sensor fabricated via the EDMIT method can be used for early diagnosis of other infectious diseases.

7.
Comput Struct Biotechnol J ; 21: 3259-3271, 2023.
Article in English | MEDLINE | ID: covidwho-2327842

ABSTRACT

The Envelope (E) protein of SARS-CoV-2 plays a key role in virus maturation, assembly, and virulence mechanisms. The E protein is characterized by the presence of a PDZ-binding motif (PBM) at its C-terminus that allows it to interact with several PDZ-containing proteins in the intracellular environment. One of the main binding partners of the SARS-CoV-2 E protein is the PDZ2 domain of ZO1, a protein with a crucial role in the formation of epithelial and endothelial tight junctions (TJs). In this work, through a combination of analytical ultracentrifugation analysis and equilibrium and kinetic folding experiments, we show that ZO1-PDZ2 domain is able to fold in a monomeric state, an alternative form to the dimeric conformation that is reported to be functional in the cell for TJs assembly. Importantly, surface plasmon resonance (SPR) data indicate that the PDZ2 monomer is fully functional and capable of binding the C-terminal portion of the E protein of SARS-CoV-2, with a measured affinity in the micromolar range. Moreover, we present a detailed computational analysis of the complex between the C-terminal portion of E protein with ZO1-PDZ2, both in its monomeric conformation (computed as a high confidence AlphaFold2 model) and dimeric conformation (obtained from the Protein Data Bank), by using both polarizable and nonpolarizable simulations. Together, our results indicate both the monomeric and dimeric states of PDZ2 to be functional partners of the E protein, with similar binding mechanisms, and provide mechanistic and structural information about a fundamental interaction required for the replication of SARS-CoV-2.

8.
Plasmonics ; : 1-8, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2319793

ABSTRACT

Coronavirus disease (COVID-19) pandemic outbreak is being investigated by severe respirational syndrome coronavirus-2 (SARS-CoV-2) as a global health issue. It is crucial to propose sensitive and rapid coronavirus detectors. Herein, we propose a biosensor based on surface plasmon resonance (SPRE) for the detection of SARS-CoV-2 virus. To achieve improved sensitivity, a BiFeO3 layer is inserted between a metal (Ag) thin film and a graphene layer in the proposed SPRE device so that it has the structure BK7 prism/ Ag/ BiFeO3/ graphene/ analyte. It has been demonstrated that a small variation in the refractive index of the analyte can cause a considerable shift in the resonance angle caused by the remarkable dielectric properties of the BiFeO3 layer, which include a high index of refraction and low loss. The proposed device has shown an extremely high sensitivity of 293 deg/RIU by optimizing the thicknesses of Ag, BiFeO3, and the number of graphene sheets. The proposed SPRE-based sensor is encouraging for use in various sectors of biosensing because of its high sensitivity.

9.
Biosens Bioelectron ; 235: 115358, 2023 Sep 01.
Article in English | MEDLINE | ID: covidwho-2311698

ABSTRACT

Accurate and rapid screening techniques on a population scale are crucial for preventing and managing epidemics like COVID-19. The standard gold test for nucleic acids in pathogenic infections is primarily the reverse transcription polymerase chain reaction (RT-PCR). However, this method is not suitable for widespread screening due to its reliance on large-scale equipment and time-consuming extraction and amplification processes. Here, we developed a collaborative system that combines high-load hybridization probes targeting N and OFR1a with Au NPs@Ta2C-M modified gold-coated tilted fiber Bragg grating (TFBG) sensors to enable direct nucleic acid detection. Multiple activation sites of SARS-CoV-2 were saturable modified on the surface of a homogeneous arrayed AuNPs@Ta2C-M/Au structure based on a segmental modification approach. The combination of hybrid probe synergy and composite polarisation response in the excitation structure results in highly specific hybridization analysis and excellent signal transduction of trace target sequences. The system demonstrates excellent trace specificity, with a limit of detection of 0.2 pg/mL, and achieves a rapid response time of 1.5 min for clinical samples without amplification. The results showed high agreement with the RT-PCR test (Kappa index = 1). And the gradient-based detection of 10-in-1 mixed samples exhibits high-intensity interference immunity and excellent trace identification. Therefore, the proposed synergistic detection platform has a good tendency to curb the global spread of epidemics such as COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nucleic Acids , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis , Nucleic Acid Amplification Techniques/methods
10.
Applied Organometallic Chemistry ; 2023.
Article in English | Scopus | ID: covidwho-2300741

ABSTRACT

Four copper (II) complexes bearing tris-(2-pyridyl)-pyrazolyl borate (Tppy) ligand with corresponding chloride (Cu-1), aqua (Cu-2), azide (Cu-3), and thiocyanide (Cu-4) substitutions were synthesized and characterized by spectroscopic and analytical methods. Spectroscopic and molecular docking studies were employed to investigate the interactions of these complexes with calf thymus (CT) DNA and bovine serum albumin (BSA). The results inferred intercalation binding mode of the complexes with DNA. All the complexes exhibited good binding with BSA as well. In addition, the binding efficacy of the Cu (II) complexes with SARS-Cov-2 was tested in silico. Further, in vitro anticancer activity of the complexes was investigated against the HeLa-cervical, HepG2-liver and A549-lung cancer, and one normal (L929-fibroblast) cell line. IC50 values unveiled that the complexes were more active than cisplatin against all three cancer cells. It was understood that complex Cu-3 containing azide substitution displayed the highest activity on the HeLa cell line (IC50 = 6.3 μM). More importantly, TppyCu (II) complexes were not active against the normal cell line. Lastly, the acridine orange/ethidium bromide (AO/EB) and 4′,6-diamidino-2-phenylindole staining assays indicated that Cu-3 induced cell death in HeLa cells at the late apoptotic stage. This complex also efficiently generated ROS in HeLa cells promoting apoptosis as understood from the DCFH-DA assay. © 2023 John Wiley & Sons, Ltd.

11.
Sens Actuators B Chem ; 387: 133785, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2306059

ABSTRACT

Accurate and rapid population-scale screening techniques based on SARS-CoV-2 RNA are essential in preventing and controlling the COVID-19 epidemic. However, the sensitivity and specificity of the assay signal are challenged by the problems of target dilution and sample contamination inherent in high-volume pooled testing. Here, we reported a collaborative system of high-loaded hybrid probes targeting N and OFR1a coupling with the novel Ta2C-M/Au/TFBG biosensor, providing high-intensity vector signals for detecting SARS-CoV-2. The method relies on a segmental modification approach to saturable modify multiple activation sites of SARS-CoV-2 on the high-performance Ta2C-M surface. The coupling of multi-site synergy with composite excited TFBG results in excellent signal transduction, detection limits (0.2 pg/mL), and hybridization efficiency. Without relying on amplification, the collaborative system achieved specific differentiation of 30 clinical samples in an average diagnostic time of 1.8 min. In addition, for the first time, a kinetic determination of dilution mixed samples was achieved and showed a high-intensity carrier signal and fantastic stability. Therefore, it can be used as a collaborative, integrated tool to play a massive role in the screening, prevention, and control of COVID-19 and other epidemics.

12.
Sensors (Basel) ; 23(8)2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2304921

ABSTRACT

Methods based on nucleic acid detection are currently the most commonly used technique in COVID-19 diagnostics. Although generally considered adequate, these methods are characterised by quite a long time-to-result and the necessity to prepare the material taken from the examined person-RNA isolation. For this reason, new detection methods are being sought, especially those characterised by the high speed of the analysis process from the moment of sampling to the result. Currently, serological methods of detecting antibodies against the virus in the patient's blood plasma have attracted much attention. Although they are less precise in determining the current infection, such methods shorten the analysis time to several minutes, making it possible to consider them a promising method for screening tests in people with suspected infection. The described study investigated the feasibility of a surface plasmon resonance (SPR)-based detection system for on-site COVID-19 diagnostics. A simple-to-use portable device was proposed for the fast detection of anti-SARS-CoV-2 antibodies in human plasma. SARS-CoV-2-positive and -negative patient blood plasma samples were investigated and compared with the ELISA test. The receptor-binding domain (RBD) of spike protein from SARS-CoV-2 was selected as a binding molecule for the study. Then, the process of antibody detection using this peptide was examined under laboratory conditions on a commercially available SPR device. The portable device was prepared and tested on plasma samples from humans. The results were compared with those obtained in the same patients using the reference diagnostic method. The detection system is effective in the detection of anti-SARS-CoV-2 with the detection limit of 40 ng/mL. It was shown that it is a portable device that can correctly examine human plasma samples within a 10 min timeframe.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Surface Plasmon Resonance , COVID-19 Testing , Antibodies, Viral
13.
Opt Quantum Electron ; 55(6): 507, 2023.
Article in English | MEDLINE | ID: covidwho-2291830

ABSTRACT

For the quick detection of the new Coronavirus (COVID-19), a highly sensitive D-shaped gold-coated surface Plasmon resonance (SPR) biosensor is presented. The COVID-19 virus may be quickly and accurately identified using the SPR-based biosensor, which is essential for halting the spread of this excruciating epidemic. The suggested biosensor is used for detection of the IBV i.e. infectious bronchitis viruses contaminated cell that belongs to the family of COVID-19 having a refractive index of - 0.96, - 0.97, - 0.98, - 0.99, - 1 that is observed with the change in EID concentration. Some important optical parameter variations are examined in the investigation process. Multiphysics version 5.3 with the Finite element method is used for the proposed biosensor. The proposed sensor depicts maximum wavelength sensitivity of 40,141.76 nm/RIU. Some other parameters such as confinement loss, crosstalk, and insertion loss are also analyzed for the proposed sensor. The reported minimum insertion loss for the refractive index (RI) - 1 is 2.9 dB. Simple design, good sensitivity, and lower value of losses make the proposed sensor proficient for the detection of infectious bronchitis viruses belonging to COVID-19.

14.
Reviews and Research in Medical Microbiology ; 33(3):148-159, 2022.
Article in English | EMBASE | ID: covidwho-2260539

ABSTRACT

Rapid diagnosis of coronavirus disease 2019 (COVID-19)-infected patients is urgent in making decisions on public health measures. There are different types of diagnostic tests, such as quantitative PCR assay, antibody, and antigen-based and CRISPR-based tests, which detect genetic materials, viral proteins, or human antibodies in clinical samples. However, the proper test should be highly sensitive, quick, and affordable to address this life-threatening situation. This review article highlights the advantages and disadvantages of each test and compares its different features, such as sensitivity, specificity, and limit of detection to reach a reliable conclusion. Moreover, the FDA- authorized kits and studies' approaches toward these have been compared to provide a better perspective to the researchers.Copyright © 2022 Lippincott Williams and Wilkins. All rights reserved.

15.
Electroanalysis ; 2023.
Article in English | Scopus | ID: covidwho-2252494

ABSTRACT

To address the lack of functional monomer diversity for the electrosynthesis of protein-selective molecularly imprinted polymers (MIPs), we introduce a new concept able to lead to a new class of functional monomers. This is based on conjugating an electropolymerizable monomer unit (umbelliferone) to an amino acid for closer mimicking of protein-based natural affinity ligands such as antibodies. As the first representative of this class of monomers an aspartate-umbelliferone (Asp-UMB) conjugate was synthesized and here we provide the proof for its suitability to generate highly affine MIPs for proteins by epitope imprinting. As model we used a heptapeptide (GFNCYFP) stemming from the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to generate epitope-imprinted polymers able to recognize the parent RBD protein. For rapid optimization and assessment of the binding kinetics we prepared MIP microarrays on surface plasmon resonance imaging (SPRi) chips. First the peptides were microspotted on the bare gold surface of the chips followed by the electropolymerization of Asp-UMB. This resulted in ca. 2 nm thick, highly uniform, and electrically insulating polymer film, well suited both for hierarchical epitope imprinting and SPRi read-out. Taking advantage also of the on-chip optimization enabled by the microarray format the increased functional diversity of the new monomer resulted in highly affine MIPs with equilibrium dissociation constants in the lower picomolar range. © 2023 The Authors. Electroanalysis published by Wiley-VCH GmbH.

16.
2022 Applied Optics and Photonics China: Optoelectronics and Nanophotonics, AOPC 2022 ; 12556, 2023.
Article in English | Scopus | ID: covidwho-2288987

ABSTRACT

In this study, we theoretically propose a surface plasmon resonance (SPR) biosensor composed of a plasmonic gold film, double negative (DNG) metamaterial, graphene-MoS2-COOH Van der Waals heterostructures and gold nanoparticles (Au NPs). We use a novel scheme of Goos-Hanchen (GH) shift to study the biosensing performances of our proposed plasmonic biosensor. The calculation results show that, both an extreme low reflectivity of 8.52×10-10 and significantly enhanced GH sensitivity of 2.1530×107 μm/RIU can be obtained, corresponding to the optimal configuration: 32 nm Au film/120 nm metamaterial/4-layer graphene/4-layer MoS2-COOH. In addition, there is a theoretically excellent linear response between the concentration of target analytes (SARS-CoV-2 and S protein) and the change in differential GH shift. Our proposed biosensor promises to be a useful tool for performing the novel coronavirus detection. © 2023 SPIE.

17.
Adv Biomark Sci Technol ; 2: 1-23, 2020.
Article in English | MEDLINE | ID: covidwho-2288563

ABSTRACT

Due to the unprecedented public health crisis caused by COVID-19, our first contribution to the newly launching journal, Advances in Biomarker Sciences and Technology, has abruptly diverted to focus on the current pandemic. As the number of new COVID-19 cases and deaths continue to rise steadily around the world, the common goal of healthcare providers, scientists, and government officials worldwide has been to identify the best way to detect the novel coronavirus, named SARS-CoV-2, and to treat the viral infection - COVID-19. Accurate detection, timely diagnosis, effective treatment, and future prevention are the vital keys to management of COVID-19, and can help curb the viral spread. Traditionally, biomarkers play a pivotal role in the early detection of disease etiology, diagnosis, treatment and prognosis. To assist myriad ongoing investigations and innovations, we developed this current article to overview known and emerging biomarkers for SARS-CoV-2 detection, COVID-19 diagnostics, treatment and prognosis, and ongoing work to identify and develop more biomarkers for new drugs and vaccines. Moreover, biomarkers of socio-psychological stress, the high-technology quest for new virtual drug screening, and digital applications are described.

18.
Plasmonics ; 18(2): 769-779, 2023.
Article in English | MEDLINE | ID: covidwho-2261593

ABSTRACT

With continuous mutations of SARS-CoV-2 virus, new highly contagious and fast-spreading variants have emerged, including Delta and Omicron. The popular label-free immunosensor based on surface plasmon resonance (SPR) technique can be used for real-time monitoring of the ligand-analyte or antibody-antigen interactions occurring on the sensor surface. In this work, an SPR-based biosensor combined with a nanodisk array was presented to enhance the sensitivity toward virus detection. The nanodisk arrays were employed to enhance the adsorption of molecules for better detection by increasing the SPR field. Four optimal sensing configurations of silver or gold nanodisks on gold thin films with different aspect ratios were achieved through systematic optimization of all parameters to yield the best sensor performance. The resonance angle can be modulated simply by the aspect ratio of nanodisk array. The sensitivity of the optimized sensors has been improved, and the detection limit is smaller than that of bare gold-based sensor. The multi-jump resonance angle curves at tiny refractive index can clearly distinguish the difference of trace concentrations, which is very important for the accurate detection of trace substances. Supplementary Information: The online version contains supplementary material available at 10.1007/s11468-023-01802-3.

19.
Biophysics (Oxf) ; 67(6): 902-912, 2022.
Article in English | MEDLINE | ID: covidwho-2258371

ABSTRACT

The papain-like protease PLpro of the SARS-CoV-2 coronavirus is a multifunctional enzyme that catalyzes the proteolytic processing of two viral polyproteins, pp1a and pp1ab. PLpro also cleaves peptide bonds between host cell proteins and ubiquitin (or ubiquitin-like proteins), which is associated with a violation of immune processes. Nine structures of the most effective inhibitors of the PLpro active center were prioritized according to the parameters of biochemical (IC 50) and cellular tests to assess the suppression of viral replication (EC 50) and cytotoxicity (CC 50). A literature search has shown that PLpro can interact with at least 60 potential protein partners in cells, 23 of which are targets for other viral proteins (human papillomavirus and Epstein-Barr virus). The analysis of protein-protein interactions showed that the proteins USP3, UBE2J1, RCHY1, and FAF2 involved in deubiquitinylation and ubiquitinylation processes contain the largest number of bonds with other proteins; the interaction of viral proteins with them can affect the architecture of the entire network of protein-protein interactions. Using the example of a spatial model of the PLpro/ubiquitin complex and a set of 154 naturally occurring compounds with known antiviral activity, 13 compounds (molecular masses in the range of 454-954 Da) were predicted as potential PLpro inhibitors. These compounds bind to the "hot" amino acid residues of the protease at the positions Gly163, Asp164, Arg166, Glu167, and Tyr264 involved in the interaction with ubiquitin. Thus, pharmacological effects on peripheral PLpro sites, which play important roles in binding protein substrates, may be an additional target-oriented antiviral strategy.

20.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2257945

ABSTRACT

The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication.


Subject(s)
Biosensing Techniques , COVID-19 , Virus Diseases , Humans , Surface Plasmon Resonance/methods , SARS-CoV-2 , COVID-19/diagnosis , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL